Dictionary Definition
mercurous adj : of or containing mercury [syn:
mercuric]
User Contributed Dictionary
English
Adjective
- Pertaining to or derived from mercury.
- Of a compound, containing mercury with an oxidation number of 1.
Synonyms
- (pertaining to or derived from mercury): mercuric
Derived terms
See also
Extensive Definition
Mercury(), also called quicksilver, is a chemical
element with the symbol Hg (Latinized ,
meaning watery or liquid silver) and atomic
number 80. A heavy, silvery d-block metal, mercury is one of six
elements that are liquid
at or near room
temperature and pressure. The others are the metals caesium, francium, gallium, and rubidium, and the non-metal
bromine. Of these, only
mercury and bromine are
liquids at
standard conditions for temperature and pressure.
Mercury is used in thermometers, barometers, manometers, sphygmomanometers,
float
valves, and other scientific apparatus, though concerns about
the element's toxicity have led to mercury thermometers and
sphygmomanometers being largely phased out in clinical environments
in favour of alcohol-filled, digital, or
thermistor-based
instruments. It remains in use in a number of other ways in
scientific and scientific research applications, and in amalgam material for dental
restoration. Mercury is mostly obtained by reduction from the
mineral cinnabar.
Mercury occurs in deposits throughout the world
and it is harmless in an insoluble form, such as mercuric sulfide,
but it is poisonous in soluble forms such as mercuric
chloride or methylmercury.
History
Mercury was known to the ancient Chinese and Indians, and was found in Egyptian tombs that date from 1500 BC. In China and Tibet, mercury use was thought to prolong life, heal fractures, and maintain generally good health. China's first emperor, Qin Shi Huang Di — said to have been buried in a tomb that contained rivers of flowing mercury, representative of the rivers of China — was driven insane and killed by mercury pills (failing liver, poison, brain death) intended to give him eternal life. The ancient Greeks used mercury in ointments; the ancient Egyptians and the Romans used it in cosmetics. By 500 BC mercury was used to make amalgams with other metals. The Indian word for alchemy is Rasavātam which means "the way of mercury".Alchemists often
thought of mercury as the First
Matter from which all metals were formed. They believed that
different metals could be
produced by varying the quality and quantity of sulfur contained within the
mercury. The purest of these was gold, and mercury was required for
the transmutation
of base (or impure) metals into gold as was the goal of many
alchemists.
Hg is the modern chemical
symbol for mercury.It comes from hydrargyrum, a Latinized form of the
Greek word
`Υδραργυρος (hydrargyros), which is a compound word meaning "water"
and "silver" — since it is liquid, like water, and yet
has a silvery metallic sheen. The element was named after the Roman
god Mercury,
known for speed and mobility. It is associated with the planet
Mercury.
The astrological symbol for the planet is also one of the
alchemical symbols for the metal. Mercury is the only metal for
which the alchemical planetary name became the common name.
Chemistry
Isotopes
There are seven stable isotopes of mercury with Hg-202 being the most abundant (29.86%). The longest-lived radioisotopes are 194Hg with a half-life of 444 years, and 203Hg with a half-life of 46.612 days. Most of the remaining radioisotopes have half-lives that are less than a day. 199Hg and 201Hg are the most often studied NMR-active nuclei, having spins of 1/2 and 3/2 respectively.Reactivity and compounds
- See also: :Category:Mercury compounds
Since it is below hydrogen in the reactivity
series of metals, mercury does not react with most acids, such
as dilute sulfuric
acid, though oxidizing acids such as concentrated sulfuric
acid and nitric acid
or aqua
regia dissolve it to give sulfate and nitrate and chloride.
Similar to silver, mercury reacts with atmospheric hydrogen
sulfide. Mercury even reacts with solid sulfur flakes, which is
used in mercury
spill kits to absorb mercury vapors (spill kits also use
activated charcoal and powdered zinc).
Some important mercury salts include:
- Mercury(I) chloride (calomel) is sometimes still used in medicine, acousto-optical filters and as a standard in electrochemistry;
- Mercury(II) chloride (which is very corrosive, sublimes and is a violent poison);
- Mercury fulminate, (a detonator widely used in explosives);
- Mercury(II) oxide, the main oxide of mercury;
- Mercury(II) sulfide (found naturally as the ore cinnabar, still used in oriental medicine, or vermilion which is a high-grade paint pigment);
- Mercury(II) selenide a semiconductor;
- Mercury(II) telluride a semiconductor; and
- Mercury cadmium telluride and mercury zinc telluride, infrared detector materials.
Laboratory tests have found that an electrical
discharge causes the noble gases
to combine with mercury vapor. These compounds are held together
with van
der Waals forces and result in Hg·Ne, Hg·Ar, Hg·Kr, and Hg·Xe
(see exciplex). Organic
mercury compounds
are also important. Methylmercury
is a dangerous compound that is widely found as a pollutant in water bodies and
streams.
The discovery of Mercury(IV)
fluoride (HgF4) was announced in September 2007.
Occurrence
Mercury is an extremely rare element in the
Earth's crust, having an average crustal abundance by mass of only
0.08 parts per million. However, because it does not blend geochemically with those
elements that constitute the majority of the crustal mass, mercury
ores can be extraordinarily concentrated considering the element's
abundance in ordinary rock. The richest mercury ores contain up to
2.5% mercury by mass, and even the leanest concentrated deposits
are at least 0.1% mercury (12,000 times average crustal
abundance).
It is found either as a native metal (rare) or in
cinnabar, corderoite, livingstonite and other
minerals, with cinnabar
(HgS) being the most
common ore. Mercury ores usually occur in very young orogenic belts
where rock of high density are forced to the crust of the Earth,
often in hot springs or other volcanic regions.
Beginning in 1558, with the invention of the
patio
process to extract silver from ore using mercury, mercury
became an essential resource in the economy of Spain and its
American colonies. More than 100,000 tons of mercury were mined
from the region of Huancavelica,
Peru, over the
course of three centuries following the discovery of deposits there
in 1563. The patio process and later pan
amalgamation process continued to create great demand for
mercury to treat silver ores until the late 1800s.
Former mines in Italy, the United
States and Mexico which once
produced a large proportion of the world supply have now been
completely mined out or, in the case of Slovenia and
Spain, shut
down due to the fall of the price of mercury. Nevada's McDermitt Mine,
the last mercury mine in the United States, closed in 1992. The
price of mercury has been highly volatile over the years and in
2006 was $650 per 76-pound flask.
Mercury is extracted by heating cinnabar in a
current of air and condensing the vapor. The equation for this
extraction is
- HgS + O2 → Hg + SO2
In 2005, China was the top producer of mercury
with almost two-thirds global share followed by Kyrgyzstan.
Several other countries are believed to have unrecorded production
of mercury from copper electrowinning processes
and by recovery from effluents.
Former mercury mines may be suited for
constructive re-use. For example, in 1976
Santa Clara County, California purchased the
historic Almaden Quicksilver Mine and created a county park on
the site, after conducting extensive safety and environmental
analysis of the property.
Releases in the environment
Preindustrial deposition rates of mercury from the atmosphere may be in the range of 4 ng/L in the western USA. Although that can be considered a natural level of exposure, regional or global sources have significant effects. Volcanic eruptions can increase the atmospheric source by 4–6 times.Natural sources such as volcanoes are responsible for
approximately half of atmospheric mercury emissions. This includes
power plants fueled with gas where the mercury has not been
removed. Emissions from coal combustion are between one and two
orders of magnitude higher than emissions from oil combustion,
depending on the country.
- 6.8% from non-ferrous metal production, typically smelters.
- 6.4% from cement production.
- 3.0% from waste disposal, including municipal and hazardous waste, crematoria, and sewage sludge incineration. This is a significant underestimate due to limited information, and is likely to be off by a factor of two to five.
Mercury also enters into the environment through
the disposal (e.g., landfilling, incineration) of certain products.
Products containing mercury include: auto parts, batteries,
fluorescent bulbs, medical products, thermometers, and thermostats.
Due to health concerns (see below), toxics use
reduction efforts are cutting back or eliminating mercury in
such products. For example, most thermometers now use
pigmented alcohol
instead of mercury. Mercury thermometers are still occasionally
used in the medical field because they are more accurate than
alcohol thermometers, though both are being replaced by electronic
thermometers. Mercury thermometers are still widely used for
certain scientific applications because of their greater accuracy
and working range.
The United
States Clean
Air Act, passed in 1990, put mercury on a list of toxic
pollutants that need to be controlled to the greatest possible
extent. Thus, industries that release high concentrations of
mercury into the environment agreed to install maximum achievable
control technologies (MACT). In March 2005 EPA rule added power
plants to the list of sources that should be controlled and a
national cap and
trade rule was issued. States were given until November 2006 to
impose stricter controls, and several States are doing so. The rule
was being subjected to legal challenges from several States in 2005
and decision was made in 2008. The Clean Air Mercury Rule was
struck down by a Federal Appeals Court on February 8, 2008. The
rule was deemed not sufficient to protect the health of persons
living near coal fired power plants. The court opinion cited the
negative impact on human health from coal fired power plants'
mercury emissions documented in the EPA Study Report to Congress of
1998.
Historically, one of the largest releases was
from the Colex plant, a lithium-isotope separation plant at Oak
Ridge. The plant operated in the 1950s and 1960s. Records are
incomplete and unclear, but government commissions have estimated
that some two million pounds of mercury are unaccounted for.
One of the worst industrial
disasters in history was caused by the dumping of mercury
compounds into Minamata Bay,
Japan. The Chisso
Corporation, a fertilizer and later
petrochemical company, was found responsible for polluting the bay
from 1932–1968. It is estimated that over 3,000 people
suffered various deformities, severe mercury poisoning symptoms or
death from what became known as Minamata
disease.
Applications
Mercury is used primarily for the manufacture of industrial chemicals or for electrical and electronic applications. It is used in some thermometers, especially ones which are used to measure high temperatures (In the United States, non-prescription sale of mercury fever thermometers is banned by a number of different states and localities). Other uses:- Mercury was used inside wobbler (fishing) lures. Its heavy, liquid form made it useful since the lures made an attractive irregular movement when the mercury moved inside the plug. Such use was stopped due to environmental concerns, but illegal preparation of modern fishing plugs has occurred.
- Mercury sphygmomanometers.
- The lenses of old lighthouses used to float and rotate in a bath of mercury which acted like a bearing.
- Mercury barometers, diffusion pumps, coulometers, and many other laboratory instruments. As an opaque liquid with a high density and a nearly linear thermal expansion, it is ideal for this role.
- The triple point of mercury, -38.8344 °C, is a fixed point used as a temperature standard for the International Temperature Scale (ITS-90).
- In some gaseous electron tubes, including ignitrons, thyratrons, and mercury arc rectifiers
- Gaseous mercury is used in mercury-vapour lamps and some "neon sign" type advertising signs and fluorescent lamps.
- Mercury is used to construct liquid-mirror telescopes. The mirror is formed by rotating liquid mercury on a disk, the parabolic form of the liquid thus formed reflecting and focusing incident light. Such telescopes are cheaper than conventional large mirror telescopes by up to a factor of 100, but the mirror cannot be tilted and always points straight up.
- Liquid mercury was sometimes used as a coolant for nuclear reactors; however, sodium is proposed for reactors cooled with liquid metal, because the high density of mercury requires much more energy to circulate as coolant.
- Liquid mercury has been proposed as a working fluid for a heat pipe type of cooling device for spacecraft heat rejection systems or radiation panels.
- Mercury was a propellant for early ion engines in electric propulsion systems. Advantages were mercury's high molecular weight, low ionization energy, low dual-ionization energy, high liquid density and liquid storability at room temperature. Disadvantages were concerns regarding environmental impact associated with ground testing and concerns about eventual cooling and condensation of some of the propellant on the spacecraft in long-duration operations. The first spaceflight to use electric propulsion was a mercury-fueled ion thruster SERT-1 launched by NASA at its Wallops Flight Facility in 1964. SERT stands for Space Electric Rocket Test. The SERT-1 flight was followed up by the SERT-2 flight in 1970. Mercury and caesium were preferred propellants for ion engines until Hughes Research Laboratory performed studies finding xenon gas to be a suitable replacement. Xenon is now the preferred propellant for ion engines as it has a high molecular weight, little or no reactivity due its noble gas nature, and has a high liquid density under mild cryogenic storage.
- Experimental Mercury vapour turbines were proposed to increase the efficiency of fossil-fuel electrical power plants.
- Mercury was once used in the amalgamation process of refining gold and silver ores. This polluting practice is still used by the garimpeiros (gold miners) of the Amazon basin in Brasil and by illegal miners in South Africa.
- Mercury is still used in some cultures for folk medicine and ceremonial purposes which may involve ingestion, injection, or the sprinkling of elemental mercury around the home. The former two procedures, especially, are extremely hazardous and the latter is nearly as so because mercury spreads easily and is therefore ingested.
- Alexander Calder built a mercury fountain for the Spanish Pavilion at the 1937 World's Fair in Paris. The fountain is now on display at the Fundació Joan Miró in Barcelona.
- Used in electrochemistry as part of a secondary reference electrode called the calomel electrode as an alternative to the Standard Hydrogen Electrode. This is used to work out the electrode potential of half cells.
- Used in Cold Cathode (also generalised under the Neon Sign Industry) lighting to increase the success of ionization and conductivity in Argon filled lamps, an Argon filled lamp without Mercury will have dull spots and will fail to light correctly. Lighting containing Mercury can only be bombarded/oven pumped once. When added to neon filled tubes the light produced will be inconsistent red/blue spots until the initial burning-in process is completed; eventually it will light a consistent dull off-blue colour.
- Mercury was once used as a gun barrel bore cleaner.
- Thiomersal, (called Thimerosal in the United States), an organic compound used as a preservative in vaccines, though this use is in decline.
In Islamic
Spain it was used for filling decorative pools.
In some applications, mercury can be replaced
with less toxic but considerably more expensive galinstan alloy.
A new type of atomic
clock, using mercury instead of caesium, has been demonstrated.
Accuracy is expected to be within one second in 100 million
years.
Hat making
From the mid-18th to the mid-19th centuries, a process called "carroting" was used in the making of felt hats. Animal skins were rinsed in an orange solution (the term "carroting" arose from this color) of the mercury compound mercuric nitrate, Hg(NO3)2·2H2O. This process separated the fur from the pelt and matted it together. This solution and the vapors it produced were highly toxic. The United States Public Health Service banned the use of mercury in the felt industry in December 1941. The psychological symptoms associated with mercury poisoning are said by some to have inspired the phrase "mad as a hatter", though etymological study suggests that the phrase is actually much older and unrelated to hatters - see hatter for commentary on the origin of the phrase. Lewis Carroll's "Mad Hatter" in his book Alice's Adventures in Wonderland was a play on words based on the older phrase, but the character himself does not exhibit symptoms of mercury poisoning.Cosmetics
Mercury is widely used in the manufacture of mascara. In 2008, Minnesota became the first state in the US to ban intentionally added mercury in cosmetics, giving it a tougher standard than the federal government.Production of chlorine and caustic soda
Chlorine is produced from sodium chloride (common salt, NaCl) using electrolysis to separate the metallic sodium from the chlorine gas. Usually the salt is dissolved in water to produce a brine. By-products of any such chloralkali process are caustic soda (sodium hydroxide (NaOH)) and hydrogen (H2). By far the largest use of mercury in the late 1900s was in the mercury cell process (also called the Castner-Kellner process) where metallic sodium is formed as an amalgam at a cathode made from mercury; this sodium is then reacted with water to produce sodium hydroxide. Many of the industrial mercury releases of the 1900s came from this process, although modern plants claimed to be safe in this regard. In 1993, the United States Public Health Service reported that "amalgam fillings release small amounts of mercury vapor," but in such a small amount that it "has not been shown to cause any ... adverse health effects". This position is not shared by all governments and there is an ongoing dental amalgam controversy. A recent review by an FDA-appointed advisory panel rejected, by a margin of 13-7, the current FDA report on amalgam safety, stating the report's conclusions were unreasonable given the quantity and quality of information currently available. Panelists said remaining uncertainties about the risk of so-called silver fillings demanded further research; in particular, on the effects of mercury-laden fillings on children and the fetuses of pregnant women with fillings, and the release of mercury vapor on insertion and removal of mercury fillings. In Norway new dental amalgam fillings are banned from 1 January 2008. The Minister of the Environment and International Development announced the ban in a press release 21 December 2007. The ban affects the use of mercury in nearly all products. The ban is implemented by changes in The Product Control Act.Medicine
Mercury and its compounds have been used in medicine, although they are much less common today than they once were, now that the toxic effects of mercury and its compounds are more widely understood.Mercury(I)
chloride (also known as calomel or mercurous chloride)
has traditionally been used as a diuretic, topical disinfectant, and laxative. Mercury(II)
chloride (also known as mercuric chloride or corrosive
sublimate) was once used to treat syphilis (along with other
mercury compounds), although it is so toxic that sometimes the
symptoms of its toxicity were confused with those of the syphilis
it was believed to treat. It was also used as a disinfectant.
Blue
mass, a pill or syrup in which mercury is the main ingredient,
was prescribed throughout the 1800s for numerous conditions
including constipation, depression, child-bearing and toothaches.
In the early 20th century, mercury was administered to children
yearly as a laxative and dewormer, and it was used in teething
powders for infants. The mercury containing organohalide Mercurochrome
is still widely used but has been banned in some countries such as
the U.S.
Since the 1930s some vaccines have contained the
preservative thiomersal, which is
metabolized or degraded to ethyl
mercury. Although it was widely
speculated that this mercury-based preservative can cause or
trigger autism in
children, scientific studies showed no evidence supporting any such
link. Nevertheless thiomersal has been removed from or reduced to
trace amounts in all U.S. vaccines recommended for children 6 years
of age and under, with the exception of inactivated influenza
vaccine.
Mercury in the form of one of its common ores,
cinnabar, remains an
important component of
Chinese, Tibetan,
and Ayurvedic
medicine. As problems may arise when these medicines are exported
to countries that prohibit the use of mercury in medicines, in
recent times, less toxic substitutes have been devised.
Today, the use of mercury in medicine has greatly
declined in all respects, especially in developed countries.
Thermometers
and sphygmomanometers
containing mercury were invented in the early 18th and late 19th
centuries, respectively. In the early 21st century, their use is
declining and has been banned in some countries, states and medical
institutions. In 2002, the U.S. Senate
passed legislation to phase out the sale of non-prescription
mercury thermometers. In 2003, Washington and
Maine became
the first states to ban mercury blood pressure devices. Mercury
compounds are found in some over-the-counter
drugs, including topical antiseptics, stimulant
laxatives, diaper-rash
ointment, eye drops, and
nasal
sprays. The
FDA has “inadequate data to establish general recognition of
the safety and effectiveness,” of the mercury ingredients in these
products. Mercury is still used in some diuretics, although
substitutes now exist for most therapeutic uses.
Gold mining
Mercury was historically extensively used in hydraulic gold mining, in order to help the gold to sink through the flowing water-gravel mixture. Thin mercury particles may form mercury-gold amalgam and therefore increase the gold recovery rates. Large scale use of mercury stopped in the 1960s. However mercury is still used in small scale, often clandestine, gold prospection. Total use of mercury in placer mining in California has been estimated to more than 4500 tons (10,000,000 lbs).Safety
see also mercury poisoning Mercury and most of its compounds are extremely toxic and are generally handled with care; in cases of spills involving mercury (such as from certain thermometers or fluorescent light bulbs) specific cleaning procedures are used to avoid toxic exposure. It can be inhaled and absorbed through the skin and mucous membranes, so containers of mercury are securely sealed to avoid spills and evaporation. Heating of mercury, or compounds of mercury that may decompose when heated, is always carried out with adequate ventilation in order to avoid exposure to mercury vapor. The most toxic forms of mercury are its organic compounds, such as dimethylmercury and methylmercury. Mercury can cause both chronic and acute poisoning.Amando
Kapauan was among the first to look into the problem of mercury
in the environment, and he designed the appropriate equipment for
mercury analysis in water, fish, and soil.
Occupational exposure
Due to the health effects of mercury exposure, industrial and commercial uses are regulated in many countries. The World Health Organization, OSHA, and NIOSH all treat mercury as an occupational hazard, and have established specific occupational exposure limits. Environmental releases and disposal of mercury are regulated in the U.S. primarily by the United States Environmental Protection Agency.Case
control studies have shown effects such as tremors, impaired
cognitive skills, and sleep disturbance in workers with chronic
exposure to mercury vapour even at low concentrations in the range
0.7–42 μg/m3.
A study has shown that acute exposure
(4–8 hours) to calculated elemental mercury levels of 1.1
to 44 mg/m3 resulted in chest pain, dyspnea, cough, hemoptysis, impairment of
pulmonary function, and evidence of interstitial pneumonitis.
Acute exposure to mercury vapor has been shown to
result in profound central nervous system effects, including
psychotic reactions characterized by delirium, hallucinations, and
suicidal tendency. Occupational exposure has resulted in
broad-ranging functional disturbance, including erethism, irritability,
excitability, excessive shyness, and insomnia. With continuing
exposure, a fine tremor develops and may escalate to violent
muscular spasms. Tremor initially involves the hands and later
spreads to the eyelids, lips, and tongue. Long-term, low-level
exposure has been associated with more subtle symptoms of erethism,
including fatigue, irritability, loss of memory, vivid dreams, and
depression.
Treatment
Research on the treatment of mercury poisoning is limited. Currently available drugs for acute mercurial poisoning include chelators N-acetyl-D,L-penicillamine (NAP), British Anti-Lewisite (BAL), 2,3-dimercapto-1-propanesulfonic acid (DMPS), and dimercaptosuccinic acid (DMSA). In one small study including 11 construction workers exposed to elemental mercury, patients were treated with DMSA and NAP. Chelation therapy with both drugs resulted in the mobilization of a small fraction of the total estimated body mercury. DMSA was able to increase the excretion of mercury to a greater extent than NAP.Mercury in fish
Fish and shellfish have a natural tendency to concentrate mercury in their bodies, often in the form of methylmercury, a highly toxic organic compound of mercury. Species of fish that are high on the food chain, such as shark, swordfish, king mackerel, albacore tuna, and tilefish contain higher concentrations of mercury than others. This is because mercury is stored in the muscle tissues of fish, and when a predatory fish eats another fish, it assumes the entire body burden of mercury in the consumed fish. Since fish are less efficient at depurating than accumulating methylmercury, fish-tissue concentrations increase over time. Thus species that are high on the food chain amass body burdens of mercury that can be ten times higher, or more, than the species they consume. This process is called biomagnification. The first occurrence of widespread mercury poisoning in humans occurred this way in Minamata, Japan, now called Minamata disease.The complexities associated with mercury
transport and environmental fate are described by USEPA in their
1997 Mercury Study Report to Congress. Because methylmercury and
high levels of elemental mercury can be particularly toxic to
unborn or young children, organizations such as the
U.S. EPA and FDA recommend that women who are pregnant or plan
to become pregnant within the next one or two years, as well as
young children avoid eating more than 6 ounces (one average meal)
of fish per week.
In the United States the FDA has an action level
for methyl mercury in commercial marine and freshwater fish that is
1.0 parts per million (ppm), and in Canada the limit for the total
of mercury content is 0.5 ppm. The Got Mercury?
website includes a calculator for determining mercury levels in
fish.
Species with characteristically low levels of
mercury include shrimp,
tilapia, salmon, pollock, and catfish (FDA March 2004). The
FDA characterizes shrimp, catfish, pollock, salmon, and canned
light tuna as low-mercury seafood, although recent tests have
indicated that up to 6 percent of canned light tuna may contain
high levels.
Mercury and aluminium
Mercury readily combines with aluminium to form a mercury-aluminum amalgam when the two pure metals come into contact. However, when the amalgam is exposed to air, the aluminium oxidizes, leaving behind mercury. The oxide flakes away, exposing more mercury amalgam, which repeats the process. This process continues until the supply of amalgam is exhausted, and since it releases mercury, a small amount of mercury can “eat through” a large amount of aluminium over time, by progressively forming amalgam and relinquishing the aluminium as oxide.Aluminium in air is ordinarily protected by a
molecule-thin layer of its own oxide, which is not porous to
oxygen. Mercury coming into contact with this oxide does no harm.
However, if any elemental aluminium is exposed (even by a recent
scratch), the mercury may combine with it, starting the process
described above, and potentially damaging a large part of the
aluminium before it finally ends.
For this reason, restrictions are placed on the
use and handling of mercury in proximity with aluminium. In
particular, mercury is not allowed aboard aircraft under most
circumstances because of the risk of it forming amalgam with
exposed aluminium parts in the aircraft.
Regulations
In the United States, the Environmental Protection Agency is charged with regulating and managing mercury contamination. Several laws give the EPA this authority, including the Clean Air Act, the Clean Water Act, the Resource Conservation and Recovery Act, and the Safe Drinking Water Act. Additionally, the Mercury-containing and Rechargeable Battery Management Act, passed in 1996, phases out the use of mercury in batteries, and provides for the efficient and cost-effective disposal of many types of used batteries.In the European
Union, the directive on the Restriction of the Use of Certain
Hazardous Substances in Electrical and Electronic Equipment (see
RoHS) bans mercury from certain electrical and electronic
products, and limits the amount of mercury in other products to
less than 1000 ppm.
There are restriction for mercury concentration in packaging (the
limit is 100 ppm for sum of mercury, lead, hexavalent
chromium and cadmium) and batteries (the
limit is 5 ppm). In July 2007, the European Union also banned
mercury in non-electrical measuring devices, such as thermometers
and barometers. The ban applies to new devices only, and contains
exemptions for the health care sector and a two year grace period
for manufacturers of barometers. Norway enacted a
total ban on the use of mercury in the manufacturing and
import/export of mercury products, effective January 1,
2008. In 2002,
several lakes in Norway were found to have a poor state of mercury
pollution, with 1 mg/g of mercury.
Mercury Spills
Mercury spillage in St. Andrew's School(paranaque)
In February 2006, the school had a mercury
spillage during a science experiment on February 16. From the 89
students exposed with mercury, 11 were confined in the
Philippine General Hospital on February 20, and were released
after few days. Several students were given chelation therapy to remove
the mercury in their blood. Due to the incident, the school was
temporarily closed. Graduating students, whose education was
postponed due to the school's closure, had classes on St. Paul's
College of Parañaque; while the undergraduates had home studying
modules. Different agencies from the national and local government
pushed efforts to decontaminate the mercury, though they were
unsuccessful. The
Department of Health hired experts from United States for the
clean-up, and the
Environmental Protection Agency (EPA) of United States
responded to give help. Globecare and Royal Haskoning of the
Netherlands
conducted the clean-up and charged for free. Jun Bernabe, mayor of
Parañaque, purchased a Lumex machine that aided in conducting
mercury levels in the school premises. Parañaque representative
Eduardo "Ed" Zialcita proposed a
bill that bans the use of mercury in schools.
Health Secretary Francisco
Duque, after assuring on the positive findings of the
Inter-Agency on Environmental Health validated by the US EPA,
declared the school safe from mercury contamination and classes
will resume on June 2006.
Despite the incident, St. Andrew's School gained
an award from the Consumers and Marketing Executive in the
Philippine Marketing Excellency Awards for being The Most
Outstanding Catholic School for Boys (Parañaque) on May 2006.
Origin of the spillage
There were several claims on the origin of the mercury spillage. One is the location of the spillage; there were reports that the mercury spilled in the classroom or in the science laboratory. Another is the action on how the mercury spilled. There were claims that the science teacher allowed to pass the beaker of mercury to the class only to observe it; others claimed that the students played with the mercury, and others claimed that the beaker was accidentally opened.References
External links
- NLM Hazardous Substances Databank – Mercury
- UNIDO/UNDP/GEM Global Mercury Project
- EPA fish consumption guidelines
- ATSDR — ToxFAQs: Mercury
- WebElements.com – Mercury
- Material Safety Data Sheet – Mercury
- Mercury Contamination in fish and Source Control, Oceana
- Hg 80 Mercury
- Global Mercury Assessment report 2002 by the UNEP.
- Natural Resources Defense Council (NRDC): Mercury Contamination in Fish guide — NRDC
- Got Mercury? calculator
- Japanese Sushi Lovers Shrug at Mercury
- NIOSH Mercury Topic Page
- Kolev, S.T. Bates, N. Mercury (UK PID). National Poisons Information Service: Medical Toxicology Unit (London Centre).
mercurous in Afrikaans: Kwik
mercurous in Arabic: زئبق
mercurous in Asturian: Mercuriu (elementu)
mercurous in Bengali: পারদ (মৌল)
mercurous in Belarusian: Ртуць
mercurous in Bosnian: Živa (element)
mercurous in Bulgarian: Живак
mercurous in Catalan: Mercuri (element)
mercurous in Chuvash: Ртуть
mercurous in Czech: Rtuť
mercurous in Corsican: Argentuvivu
mercurous in Welsh: Mercwri
mercurous in Danish: Kviksølv
mercurous in German: Quecksilber
mercurous in Estonian: Elavhõbe
mercurous in Modern Greek (1453-):
Υδράργυρος
mercurous in Erzya: Эрексия
mercurous in Spanish: Mercurio (elemento)
mercurous in Esperanto: Hidrargo
mercurous in Basque: Merkurio (elementua)
mercurous in Persian: جیوه
mercurous in French: Mercure (chimie)
mercurous in Friulian: Mercuri (element)
mercurous in Irish: Mearcair (airgead beo)
mercurous in Manx: Mercur
mercurous in Galician: Mercurio (elemento)
mercurous in Korean: 수은
mercurous in Armenian: Սնդիկ
mercurous in Croatian: Živa
mercurous in Ido: Merkurio
mercurous in Indonesian: Raksa
mercurous in Icelandic: Kvikasilfur
mercurous in Italian: Mercurio (elemento)
mercurous in Hebrew: כספית
mercurous in Swahili (macrolanguage):
Zebaki
mercurous in Haitian: Mèki (eleman)
mercurous in Kurdish: Zîbeq
mercurous in Latin: Hydrargentum
mercurous in Latvian: Dzīvsudrabs
mercurous in Luxembourgish: Quecksëlwer
mercurous in Lithuanian: Gyvsidabris
mercurous in Lojban: margu
mercurous in Hungarian: Higany
mercurous in Macedonian: Жива
mercurous in Maori: Konuoi
mercurous in Malay (macrolanguage):
Raksa
nah:Yōliamochitl
mercurous in Dutch: Kwik
mercurous in Japanese: 水銀
mercurous in Norwegian: Kvikksølv
mercurous in Norwegian Nynorsk: Kvikksølv
mercurous in Occitan (post 1500): Mercuri
(element)
mercurous in Low German: Quecksülver
mercurous in Polish: Rtęć
mercurous in Portuguese: Mercúrio (elemento
químico)
mercurous in Romanian: Mercur
mercurous in Quechua: Yaku qullqi
mercurous in Russian: Ртуть
mercurous in Sicilian: Mercuriu (elementu
chìmicu)
mercurous in Simple English: Mercury
(element)
mercurous in Slovenian: Živo srebro
mercurous in Serbian: Жива
mercurous in Serbo-Croatian: Živa
mercurous in Finnish: Elohopea
mercurous in Swedish: Kvicksilver
mercurous in Tamil: பாதரசம்
mercurous in Thai: ปรอท
mercurous in Vietnamese: Thủy ngân
mercurous in Turkish: Cıva
mercurous in Ukrainian: Ртуть
mercurous in Urdu: پارہ
mercurous in Contenese: 水銀
mercurous in Chinese: 汞
mercurous in Slovak: Ortuť
(nerast)